Self-distillation lets LLMs acquire new skills without erasing old ones
Read Our Expert Analysis
Create an account or login for free to unlock our expert analysis and key takeaways for this development.
By continuing, you agree to receive marketing communications and our weekly newsletter. You can opt-out at any time.
Recommended for you

Nvidia’s Dynamic Memory Sparsification slashes LLM reasoning memory costs by up to 8x
Nvidia researchers introduced Dynamic Memory Sparsification (DMS), a retrofit that compresses the KV cache so large language models can reason farther with far less GPU memory. In benchmarks DMS reduced cache footprint by as much as eightfold, raised throughput up to five times for some models, and improved task accuracy under fixed memory budgets.
Internal debates inside advanced LLMs unlock stronger reasoning and auditability
A Google-led study finds that high-performing reasoning models develop internal, multi-perspective debates that materially improve complex planning and problem-solving. The research implies practical shifts for model training, prompt design, and enterprise auditing—favoring conversational, messy training data and transparency over sanitized monologues.


