Context engineering: designing what AI systems actually use to reason
Read Our Expert Analysis
Create an account or login for free to unlock our expert analysis and key takeaways for this development.
By continuing, you agree to receive marketing communications and our weekly newsletter. You can opt-out at any time.
Recommended for you
How AI Is Reshaping Engineering Workflows in the U.S.
AI is shifting engineering from manual implementation toward faster, experiment-driven cycles, greater emphasis on documentation and intent, and new platform and data‑architecture demands. Real‑world platform partnerships (for example, Snowflake’s reported deal to embed OpenAI models within its data platform) illustrate both the convenience of in‑place model access and the procurement, cost, and governance tradeoffs that amplify the need for provenance, policy automation, unified data views, and platform engineering to avoid opaque agentic outputs and vendor lock‑in.
From Connectivity to Collective Thought: Engineering AI That Truly Collaborates
Speakers at VentureBeat’s AI forum argued that the next stage for agentic AI is not merely connecting endpoints but enabling shared goals, persistent context, and negotiated cooperation across organizations. They proposed interoperable protocols, a shared-memory fabric, and cognition-management layers — paired with platform-native data primitives — to reduce brittle coordination, improve correctness, and make multi-agent workflows auditable and secure.
UK: Concentric AI presses for context-first controls to tame GenAI data risk
Concentric AI says rapid GenAI use is widening enterprise data risk as employees share sensitive material with external models, and urges context-aware discovery, application-layer enforcement and model governance to close the gap. The vendor frames these measures as practical complements to broader industry moves toward provenance, zero-trust and runtime observability to make AI adoption auditable and defensible.