When Code Becomes an Intermediary: Rethinking How AI Produces Software
Read Our Expert Analysis
Create an account or login for free to unlock our expert analysis and key takeaways for this development.
By continuing, you agree to receive marketing communications and our weekly newsletter. You can opt-out at any time.
Recommended for you
Why coding agents are already changing how developers work
Autonomous coding agents are accelerating repetitive engineering work and shifting developer skill requirements toward specification, validation, and system thinking. To turn short‑term speed gains into durable delivery improvements, organizations must invest in observability, provenance, and platform discipline so agentic outputs remain auditable, reversible, and compliant.
Global: How ‘golden paths’ must constrain AI or risk eroding developer productivity
Generative AI can speed writing code but, without platform guardrails, it amplifies architectural sprawl, provenance gaps, and operational burden. Organizations that codify constrained, opinionated development routes — and account for agentic tools and infrastructure concentration — will capture durable productivity by shifting effort from endless integration to reliable delivery.
Vibe coding and agentic AI set to boost IT productivity
Enterprises are moving toward vibe coding: domain experts express desired outcomes in plain language while agentic AI plans, executes, and iterates, reducing routine triage and shortening mean time to repair for many operational issues. Capturing durable productivity gains requires platform engineering, a projection‑first data architecture (dynamic CMDBs and canonical records), built‑in observability and provenance, and governance to prevent hallucinations, hidden drift, and vendor lock‑in.