
Zhipu’s GLM 4.7 Breaks Into U.S. Developer Workflows, Tightening AI Coding Competition
Read Our Expert Analysis
Create an account or login for free to unlock our expert analysis and key takeaways for this development.
By continuing, you agree to receive marketing communications and our weekly newsletter. You can opt-out at any time.
Recommended for you
How AI Is Reshaping Engineering Workflows in the U.S.
AI is shifting engineering from manual implementation toward faster, experiment-driven cycles, greater emphasis on documentation and intent, and new platform and data‑architecture demands. Real‑world platform partnerships (for example, Snowflake’s reported deal to embed OpenAI models within its data platform) illustrate both the convenience of in‑place model access and the procurement, cost, and governance tradeoffs that amplify the need for provenance, policy automation, unified data views, and platform engineering to avoid opaque agentic outputs and vendor lock‑in.

Chinese tech firms ratchet up AI model launches, shifting the battleground from research to scale and distribution
Chinese technology companies are accelerating public releases of advanced generative and agent-capable models while pairing permissive access and low-cost distribution with platform hooks that convert usage into commerce. That commercial emphasis—backed by rising developer telemetry for non‑Western models and stronger upstream demand for specialized compute—reshapes competition around reach, infrastructure and governance rather than raw benchmark supremacy.

